抄録
A certain interaction-diffusion equation occurring in morphogenesis is considered. This equation is proposed by Gierer and Meinhardt, which is introduced by Child's gradient theory and Turing's idea about diffusion driven instability. It is shown that slightly asymmetric gradients in the tissue produce stable striking patterns depending on its asymmetry, starting from uniform distribution of morphogens. The tool is the perturbed bifurcation theory. Moreover, from a mathematical point of view, the global existence of steady state solutions with respect to some parameters is discussed.
本文言語 | English |
---|---|
ページ(範囲) | 243-263 |
ページ数 | 21 |
ジャーナル | Journal of Mathematical Biology |
巻 | 7 |
号 | 3 |
DOI | |
出版ステータス | Published - 1979 4月 |
外部発表 | はい |
ASJC Scopus subject areas
- モデリングとシミュレーション
- 農業および生物科学(その他)
- 応用数学