抄録
Since the discovery of the giant magnetoresistance effect the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120 mK and 350 mK are extracted at room temperature and 77 K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.
本文言語 | English |
---|---|
ページ(範囲) | 636-639 |
ページ数 | 4 |
ジャーナル | Nature Physics |
巻 | 9 |
号 | 10 |
DOI | |
出版ステータス | Published - 2013 10月 |
ASJC Scopus subject areas
- 物理学および天文学(全般)