Stability of stationary solutions to the Navier–Stokes equations in the Besov space

Hideo Kozono, Senjo Shimizu

研究成果: Article査読

抄録

We consider the stability of the stationary solution w of the Navier–Stokes equations in the whole space (Formula presented.) for (Formula presented.). It is clarified that if w is small in (Formula presented.) for (Formula presented.) and (Formula presented.), then for every small initial disturbance (Formula presented.) with (Formula presented.) and (Formula presented.) ((Formula presented.)), there exists a unique solution (Formula presented.) of the nonstationary Navier–Stokes equations on (0, ∞) with (Formula presented.) such that (Formula presented.) and (Formula presented.) as (Formula presented.), for (Formula presented.), (Formula presented.), and small (Formula presented.).

本文言語English
ページ(範囲)1964-1982
ページ数19
ジャーナルMathematische Nachrichten
296
5
DOI
出版ステータスPublished - 2023 5月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Stability of stationary solutions to the Navier–Stokes equations in the Besov space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル