Statistical trajectory of an approximate em algorithm for probabilistic image processing

Kazuyuki Tanaka, D. M. Titterington

研究成果: Article査読

14 被引用数 (Scopus)

抄録

We calculate analytically a statistical average of trajectories of an approximate expectation-maximization (EM) algorithm with generalized belief propagation (GBP) and a Gaussian graphical model for the estimation of hyperparameters from observable data in probabilistic image processing. A statistical average with respect to observed data corresponds to a configuration average for the random-field Ising model in spin glass theory. In the present paper, hyperparameters which correspond to interactions and external fields of spin systems are estimated by an approximate EM algorithm. A practical algorithm is described for gray-level image restoration based on a Gaussian graphical model and GBP. The GBP approach corresponds to the cluster variation method in statistical mechanics. Our main result in the present paper is to obtain the statistical average of the trajectory in the approximate EM algorithm by using loopy belief propagation and GBP with respect to degraded images generated from a probability density function with true values of hyperparameters. The statistical average of the trajectory can be expressed in terms of recursion formulas derived from some analytical calculations.

本文言語English
論文番号007
ページ(範囲)11285-11300
ページ数16
ジャーナルJournal of Physics A: Mathematical and Theoretical
40
37
DOI
出版ステータスPublished - 2007 9月 14

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「Statistical trajectory of an approximate em algorithm for probabilistic image processing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル