Steiner quadruple systems with point-regular abelian automorphism groups

Akihiro Munemasa, Masanori Sawa

研究成果: Article査読

5 被引用数 (Scopus)

抄録

In this article we present a graph theoretic construction of Steiner quadruple systems (SQS) admitting Abelian groups as point-regular automorphism groups. The resulting SQS has an extra property that we call A-reversibility, where A is the underlying Abelian group. In particular, when A is a 2-group of exponent at most 4, it is shown that an A-reversible SQS always exists. When the Sylow 2-subgroup of A is cyclic, we give a necessary and sufficient condition for the existence of an A-reversible SQS, which is a generalization of a necessary and sufficient condition for the existence of a dihedral SQS by Piotrowski (1985). This enables one to construct A-reversible SQS for any Abelian group A of order v such that for every prime divisor p of v there exists a dihedral SQS(2p).

本文言語English
ページ(範囲)97-128
ページ数32
ジャーナルJournal of Statistical Theory and Practice
6
1
DOI
出版ステータスPublished - 2012 3月 1

ASJC Scopus subject areas

  • 統計学および確率

フィンガープリント

「Steiner quadruple systems with point-regular abelian automorphism groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル