The cosmic infrared background experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light

Mai Shirahata, Toshiaki Arai, John Battle, James Bock, Asantha Cooray, Akito Enokuchi, Viktor Hristov, Yoshikazu Kanai, Min Gyu Kim, Phillip Korngut, Alicia Lanz, Dae Hee Lee, Peter Mason, Toshio Matsumoto, Shuji Matsuura, Tracy Morford, Yosuke Ohnishi, Won Kee Park, Kei Sano, Norihide TakeyamaKohji Tsumura, Takehiko Wada, Shiang Yu Wang, Michael Zemcov

研究成果: Conference contribution

11 被引用数 (Scopus)


We present the current status of the Cosmic Infrared Background ExpeRiment-2 (CIBER-2) project, whose goal is to make a rocket-borne measurement of the near-infrared Extragalactic Background Light (EBL), under a collaboration with U.S.A., Japan, South Korea, and Taiwan. The EBL is the integrated light of all extragalactic sources of emission back to the early Universe. At near-infrared wavelengths, measurement of the EBL is a promising way to detect the diffuse light from the first collapsed structures at redshift zâ1/410, which are impossible to detect as individual sources. However, recently, the intra-halo light (IHL) model is advocated as the main contribution to the EBL, and our new result of the EBL fluctuation from CIBER-1 experiment is also supporting this model. In this model, EBL is contributed by accumulated light from stars in the dark halo regions of low- redshift (z<2) galaxies, those were tidally stripped by the interaction of satellite dwarf galaxies. Thus, in order to understand the origin of the EBL, both the spatial fluctuation observations with multiple wavelength bands and the absolute spectroscopic observations for the EBL are highly required. After the successful initial CIBER- 1 experiment, we are now developing a new instrument CIBER-2, which is comprised of a 28.5-cm aluminum telescope and three broad-band, wide-field imaging cameras. The three wide-field (2.3×2.3 degrees) imaging cameras use the 2K×2K HgCdTe HAWAII-2RG arrays, and cover the optical and near-infrared wavelength range of 0.5-0.9 μm, 1.0-1.4 μm and 1.5-2.0 μm, respectively. Combining a large area telescope with the high sensitivity detectors, CIBER-2 will be able to measure the spatial fluctuations in the EBL at much fainter levels than those detected in previous CIBER-1 experiment. Additionally, we will use a linear variable filter installed just above the detectors so that a measurement of the absolute spectrum of the EBL is also possible. In this paper, the scientific motivation and the expected performance for CIBER-2 will be presented. The detailed designs of the telescope and imaging cameras will also be discussed, including the designs of the mechanical, cryogenic, and electrical systems.

ホスト出版物のタイトルSpace Telescopes and Instrumentation 2016
ホスト出版物のサブタイトルOptical, Infrared, and Millimeter Wave
編集者Howard A. MacEwen, Makenzie Lystrup, Giovanni G. Fazio
出版ステータスPublished - 2016
イベントSpace Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave - Edinburgh, United Kingdom
継続期間: 2016 6月 262016 7月 1


名前Proceedings of SPIE - The International Society for Optical Engineering


OtherSpace Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave
国/地域United Kingdom

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学


「The cosmic infrared background experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。