TY - JOUR
T1 - Theoretical study of a localized quantum spin reversal by the sequential injection of spins in a spin quantum dot
AU - Kokado, Satoshi
AU - Ueda, Kazumasa
AU - Harigaya, Kikuo
AU - Sakuma, Akimasa
PY - 2007/8/30
Y1 - 2007/8/30
N2 - This is a theoretical study of the reversal of a localized quantum spin induced by sequential injection of spins for a spin quantum dot that has a quantum spin. The system consists of "electrode/quantum well (QW)/dot/QW/electrode" junctions, in which the left QW has an energy level of conduction electrons with only up-spin. We consider a situation in which up-spin electrons are sequentially injected from the left electrode into the dot through the QW and an exchange interaction acts between the electrons and the localized spin. To describe the sequentially injected electrons, we propose a simple method based on approximate solutions from the time-dependent Schrödinger equation. Using this method, it is shown that the spin reversal occurs when the right QW has energy levels of conduction electrons with only down-spin. In particular, the expression of the reversal time of a localized spin is derived, and the upper and lower limits of the time are clearly expressed. This expression is expected to be useful for a rough estimation of the minimum relaxation time of the localized spin to achieve the reversal. We also obtain analytic expressions for the expectation value of the localized spin and the electrical current as a function of time. In addition, we found that a system with the nonmagnetic right QW exhibits spin reversal or nonreversal depending on the exchange interaction.
AB - This is a theoretical study of the reversal of a localized quantum spin induced by sequential injection of spins for a spin quantum dot that has a quantum spin. The system consists of "electrode/quantum well (QW)/dot/QW/electrode" junctions, in which the left QW has an energy level of conduction electrons with only up-spin. We consider a situation in which up-spin electrons are sequentially injected from the left electrode into the dot through the QW and an exchange interaction acts between the electrons and the localized spin. To describe the sequentially injected electrons, we propose a simple method based on approximate solutions from the time-dependent Schrödinger equation. Using this method, it is shown that the spin reversal occurs when the right QW has energy levels of conduction electrons with only down-spin. In particular, the expression of the reversal time of a localized spin is derived, and the upper and lower limits of the time are clearly expressed. This expression is expected to be useful for a rough estimation of the minimum relaxation time of the localized spin to achieve the reversal. We also obtain analytic expressions for the expectation value of the localized spin and the electrical current as a function of time. In addition, we found that a system with the nonmagnetic right QW exhibits spin reversal or nonreversal depending on the exchange interaction.
UR - http://www.scopus.com/inward/record.url?scp=34548450157&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548450157&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.76.054451
DO - 10.1103/PhysRevB.76.054451
M3 - Article
AN - SCOPUS:34548450157
SN - 0163-1829
VL - 76
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 5
M1 - 054451
ER -