Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity

Kazuhiro Ishige, Shinya Okabe, Tokushi Sato

研究成果: Article査読

抄録

In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem -Δu+u=F(u)+κμ in RN, u>0in RN, u(x)→0as |x|→∞, where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ Lc1(RN) is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ∗ > 0 such that problem (P) possesses a solution if 0 < κ < κ∗ and it does not possess no solutions if κ > κ∗. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ∗.

本文言語English
ページ(範囲)968-992
ページ数25
ジャーナルAdvances in Nonlinear Analysis
11
1
DOI
出版ステータスPublished - 2022 1月 1

ASJC Scopus subject areas

  • 分析

フィンガープリント

「Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル