Torsion zero-cycles on a product of canonical lifts of elliptic curves

Takao Yamazaki

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Let X be a surface over a p-adic field with good reduction and let Y be its special fiber. We write T (X) and T (Y) for the kernels of the Albanese maps of X and Y, respectively. Then, F(X) = T(X)/T(X)div is conjectured to be finite, where T(X)div is the maximal divisible subgroup of T(X). Furthermore, F(X) is conjectured to be isomorphic to T(Y) modulo p-primary torsion. We show that the p-primary torsion subgroup of F(X) can be arbitrary large even though we fix the special fiber Y.

本文言語English
ページ(範囲)289-306
ページ数18
ジャーナルK-Theory
31
4
DOI
出版ステータスPublished - 2004 4月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Torsion zero-cycles on a product of canonical lifts of elliptic curves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル