Twisted Wess-Zumino-Witten models on elliptic curves

Gen Kuroki, Takashi Takebe

研究成果: Article査読

16 被引用数 (Scopus)

抄録

Investigated is a variant of the Wess-Zumino-Witten model called a twisted WZW model, which is associated to a certain Lie group bundle on a family of elliptic curves. The Lie group bundle is a non-trivial bundle with flat connection and related to the classical elliptic r-matrix. (The usual (non-twisted) WZW model is associated to a trivial group bundle with trivial connection on a family of compact Riemann surfaces and a family of its principal bundles.) The twisted WZW model on a fixed elliptic curve at the critical level describes the XYZ Gaudin model. The elliptic Knizhnik-Zamolodchikov equations associated to the classical elliptic r-matrix appear as flat connections on the sheaves of conformal blocks in the twisted WZW model.

本文言語English
ページ(範囲)1-56
ページ数56
ジャーナルCommunications in Mathematical Physics
190
1
DOI
出版ステータスPublished - 1997

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Twisted Wess-Zumino-Witten models on elliptic curves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル