Ultrafast electronic processes at semiconductor polymer heterojunctions: A molecular-level, quantum-dynamical analysis

I. Burghardt, E. R. Bittner, Hiroyuki Tamura

    研究成果: Conference article査読

    1 被引用数 (Scopus)

    抄録

    This contribution gives an overview of our recent study of phonon driven exciton dissociation at semiconductor polymer heterojunctions, using a quantum dynamical analysis based on a linear vibronic coupling model parametrized for three electronic states and 20-30 phonon modes. The decay of the photogenerated exciton towards an interfacial charge transfer state is an ultrafast (femtosecond to picosecond scale) process which initiates the photocurrent generation. We consider several representative interface configurations, which are shown to exhibit an efficient exciton dissociation. The process depends critically on the presence of intermediate states, and on the dynamical interplay between high-frequency (C=C stretch) and low-frequency (ring-torsional) modes. The dynamical mechanism is interpreted in terms of a hierarchical electron-phonon model which allows one to identify generalized reaction coordinates for the nonadiabatic process. This analysis highlights that the electron-phonon coupling is dominated by the high-frequency modes, but the low-frequency modes are crucial in mediating the transition to a charge-separated state. The ultra-fast, highly nonequilibrium dynamics is in accordance with spectroscopic observations.

    本文言語English
    ページ(範囲)138-143
    ページ数6
    ジャーナルAIP Conference Proceedings
    1102
    DOI
    出版ステータスPublished - 2009 5月 12
    イベントTheory and Applications of Computational Chemistry, TACC 2008 - Shanghai, China
    継続期間: 2008 9月 232008 9月 27

    ASJC Scopus subject areas

    • 物理学および天文学(全般)

    フィンガープリント

    「Ultrafast electronic processes at semiconductor polymer heterojunctions: A molecular-level, quantum-dynamical analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル