Wigner solids of domain wall skyrmions

Kaifeng Yang, Katsumi Nagase, Yoshiro Hirayama, Tetsuya D. Mishima, Michael B. Santos, Hongwu Liu

研究成果: Article査読

4 被引用数 (Scopus)


Detection and characterization of a different type of topological excitations, namely the domain wall (DW) skyrmion, has received increasing attention because the DW is ubiquitous from condensed matter to particle physics and cosmology. Here we present experimental evidence for the DW skyrmion as the ground state stabilized by long-range Coulomb interactions in a quantum Hall ferromagnet. We develop an alternative approach using nonlocal resistance measurements together with a local NMR probe to measure the effect of low current-induced dynamic nuclear polarization and thus to characterize the DW under equilibrium conditions. The dependence of nuclear spin relaxation in the DW on temperature, filling factor, quasiparticle localization, and effective magnetic fields allows us to interpret this ground state and its possible phase transitions in terms of Wigner solids of the DW skyrmion. These results demonstrate the importance of studying the intrinsic properties of quantum states that has been largely overlooked.

ジャーナルNature communications
出版ステータスPublished - 2021 12月 1

ASJC Scopus subject areas

  • 化学 (全般)
  • 生化学、遺伝学、分子生物学(全般)
  • 物理学および天文学(全般)


「Wigner solids of domain wall skyrmions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。