Zero-shot versus Many-shot: Unsupervised Texture Anomaly Detection

Toshimichi Aota, Lloyd Teh Tzer Tong, Takayuki Okatani

研究成果: Conference contribution

抄録

Research on unsupervised anomaly detection (AD) has recently progressed, significantly increasing detection accuracy. This paper focuses on texture images and considers how few normal samples are needed for accurate AD. We first highlight the critical nature of the problem that previous studies have overlooked: accurate detection gets harder for anisotropic textures when image orientations are not aligned between inputs and normal samples. We then propose a zero-shot method, which detects anomalies without using a normal sample. The method is free from the issue of unaligned orientation between input and normal images. It assumes the input texture to be homogeneous, detecting image regions that break the homogeneity as anomalies. We present a quantitative criterion to judge whether this assumption holds for an input texture. Experimental results show the broad applicability of the proposed zero-shot method and its good performance comparable to or even higher than the state-of-the-art methods using hundreds of normal samples. The code and data are available from https://drive.google.com/drive/folders/10OyPzvI3H6llCZBxKxFlKWt1Pw1tkMK1.

本文言語English
ホスト出版物のタイトルProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ5553-5561
ページ数9
ISBN(電子版)9781665493468
DOI
出版ステータスPublished - 2023
イベント23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States
継続期間: 2023 1月 32023 1月 7

出版物シリーズ

名前Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Conference

Conference23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
国/地域United States
CityWaikoloa
Period23/1/323/1/7

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Zero-shot versus Many-shot: Unsupervised Texture Anomaly Detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル